PNHP Logo

| SITE MAP | ABOUT PNHP | CONTACT US | LINKS

NAVIGATION PNHP RESOURCES
Posted on November 12, 2007

Health Care Special Issue: Creative Destruction

PRINT PAGE
EN ESPAÑOL



The best case against universal health care.

Jonathan Cohn
The New Republic
Published: Monday, November 12, 2007

More than a decade ago, Michael Kinsley, the journalist and former editor of this magazine, developed Parkinson’s disease—a degenerative condition that impairs motor and speech control, producing tremors, rigidity, and eventually severe disability. While the standard regimen of medications helped, he knew that his symptoms were bound to get steadily worse with time. He needed something better—something innovative—before the disease really progressed. In 2006, he got it at the famed Cleveland Clinic in Ohio.

The treatment Mike received is called Deep Brain Stimulation, or DBS for short. It began with a physician—one of the world’s top Parkinson’s specialists—drilling two holes in his head, into which were implanted two thin electrodes made of titanium. The electrodes were attached to wires, which the physician threaded behind the internal portions of Mike’s ear, down his neck, and eventually into his chest cavity, where they were connected to a pair of tiny battery-powered controllers. After the surgery, the doctor activated the controllers using a remote device, unleashing a steady pulse of small electrical shocks that ran across the wires, through the electrodes, and— finally—to the part of the brain that regulates movement. DBS doesn’t cure Parkinson’s, but it has been shown to control the symptoms for extended periods of time. And that’s what happened for Mike (who is also, full disclosure, a friend).

DBS represents the cutting edge of Parkinson’s treatment; the Food and Drug Administration approved it only ten years ago. It is also very costly. Medtronic, a company that makes the electrodes, says the whole procedure costs between $50,000 and $60,000. And, because the treatment’s main effect is to suppress and delay the onset of symptoms, rather than cure the disease, Mike started wondering whether a system of universal health insurance would pay for it—and, if so, in which cases.

After all, in universal coverage systems, the government typically defines a minimum set of benefits—a list that is put together based on frank assessments of cost effectiveness. (Even if the government achieves universal coverage through private plans rather than through a single-payer system, most insurers would likely end up offering something very close to that same set of benefits. ) The government might decide that $50,000 or $60,000 is simply too much to spend for something that doesn’t cure Parkinson’s—or, at least, limit the treatment to certain people, such as those in more advanced stages of the disease. Mike could always have paid for the procedure out of his own pocket. But most Americans couldn’t. If the government decided the treatment wasn’t cost effective, he pointed out, many Americans would be forced to go without it—unless they could find a doctor and hospital willing to do it for free.

And that prompted another thought—not from Mike but from me. All of this was assuming DBS even existed. The United States is famously the world leader in medical innovation— in part, it would seem, because we spend like a drunken sailor when it comes to medical care. Today, we devote 16 percent of our gross domestic product to health care, by far the largest proportion of any country in the world. (The highest spending country in Europe, Switzerland, devotes just 12 percent.) That huge, largely uncontrolled spending translates into large profits for health care companies, offering an incentive for them to do research and development—the kind, presumably, that plays a significant role in breakthroughs like DBS. Universal health care would attempt to bring health care costs under control by, among other things, using government’s leverage to drive down prices of everything from medical services to drugs and devices. And, if the payoff for something like DBS weren’t as big as it is now, who’s to say a company would have bothered developing it in the first place?

As Mike himself acknowledged, none of this seals the case against universal health care. On the contrary, maybe the trade-offs between covering everybody and fostering innovative health care are inevitable—and perhaps innovation has to come second. Maybe what is good for some people with Parkinson’s isn’t necessarily in the best interests of the country as a whole. On the other hand, people with Parkinson’s can contribute more to the economy (and society in general) if their symptoms subside. They might also need less ongoing care, which could actually save money. Besides, true innovation ultimately benefits everybody by pushing the boundaries of the medically possible. Can we really count on a universal coverage system to weigh all of that? In other words, can we really be sure that universal health care won’t come at the expense of innovative medicine?

It’s a valid set of questions, which is more than you can say for most of the arguments against universal health care circulating these days. If you’ve listened to Rudy Giuliani or any of the other Republican presidential candidates lately, then you’ve probably heard them claim that creating universal health care would necessarily lead to inferior treatments, particularly for deadly diseases like cancer. But that just isn’t so. While the United States is a world leader in cancer care, other countries, such as France, Sweden, and Switzerland, boast overall survival rates that are nearly comparable. For some variants—such as cervical cancer, non-Hodgkin lymphoma, and two common forms of leukemia—the U.S. survival rate, although good, lags behind at least some other countries. You may also have heard critics complain that universal health care inevitably leads to long lines for treatments, as it sometimes has in Britain and Canada. Again, the facts just don’t back that up. According to the Organization for Economic Cooperation and Development, France and Germany don’t have chronic waiting lines. Access to care in those countries turns out to be as easy as, if not easier than, in the United States, where even people with good private insurance must sometimes wait to see a specialist or go through managed care gatekeepers to get tests and treatments recommended by their physicians. As National Review’s Ramesh Ponnuru recently acknowledged, in a refreshing burst of candor, “[T]he best national health-insurance programs do not bear out the horror stories that conservatives like to tell about them.”

But one argument against universal health insurance isn’t so easy to dismiss: the argument about innovation and the cutting edge of medical care. It goes more or less along the lines of my conversation with Mike Kinsley: In a universal coverage system, the government would seek to limit spending by forcing down payments to doctors and pharmaceutical companies, while scrutinizing treatments for cost-effectiveness. This, in turn, would lead to both less innovation and less access to the innovation that already exists. And the public would end up losing out, because, as Tyler Cowen wrote last year in The New York Times, “the American health care system, high expenditures and all, is driving innovation for the entire world.”

Cowen, a George Mason University economist, is a self-described libertarian. But it’s not just libertarians, or even just conservatives, who say such things. Liberals have been known to voice similar concerns, albeit more carefully. Notable among them is David Cutler, a highly respected Harvard economist, whose book Your Money or Your Life makes a powerful argument that spending a lot of money on health care is frequently worth it—specifically, that investments in areas like neonatal and cardiovascular care have produced longer and healthier lives, more than justifying their exorbitant price tags. And, while Cutler’s work on this subject remains somewhat iconoclastic, most economists would concede that it’s possible a universal system could stifle innovation by pushing too hard on prices or applying the wrong kind of scrutiny to medical treatments.

But it’s one thing to say that universal coverage could lead to less innovation or reduce the availability of high-tech care. It is quite another to say that it will do those things, which is the claim that opponents frequently make. That argument requires several leaps of logic, many of them highly suspect. The forces that produce innovation in medicine turn out to be a great deal more complicated than critics of universal coverage seem to grasp. Ultimately, whether innovation would continue to thrive under universal health care depends entirely on what kind of system we create and how well we run it. In fact, it’s quite possible that universal coverage could lead to better innovation.

The story of Deep Brain Stimulation actually holds some important lessons about how innovation frequently takes place—and why it’s not all that dependent on a non-universal, private health care system like the one we have in the United States. For one thing, it turns out that DBS isn’t exactly an American innovation. If anybody deserves credit for developing it, it’s the French—and one French doctor in particular.

That doctor’s name is Alim-Louis Benabid. A recently retired neurosurgeon who did his work at the University of Grenoble, near the French Alps, Benabid spent the early part of his career treating Parkinson’s patients with what was, at the time, the standard regimen: first, medication; then, when the medication stopped working, surgery. The surgery involved performing lesions in the brain—that is, deliberately damaging or removing diseased tissue—with the hope of destroying the part that was causing the tremors and disability. This procedure sometimes alleviated symptoms, but it was also a clumsy, irreversible move with the potential for severe side-effects. (It was easy to damage the wrong part of the brain.) That’s why it was reserved for patients with the worst symptoms—those for whom medication had either stopped working or never worked at all.

The key challenge in surgery was always figuring out where, exactly, to perform the lesions. To do that, surgeons would begin by applying small electrical charges to different parts of the brain—then observe which part of the body reacted. (Patients were kept under local anesthesia only, so their bodies could respond to the stimuli.) Benabid was doing that to a patient one day in 1985 when serendipity struck: One of the shocks suddenly caused a tremor to stop altogether. As he later explained in an interview with Technology Review, Benabid at first thought he had hurt the patient and apologized. But the patient said, “No, no, it was nice.” So Benabid tried again—and, once again, the charge stopped the tremor. “My first thought was, I was relieved it wasn’t a complication. The concomitant thought was, ‘That’s interesting!’”

Benabid theorized that applying a charge on a constant basis might suppress symptoms for long periods of time. And a prototype of hardware for doing that already existed: Years before, neurosurgeons had begun using small implanted electrodes to treat severe chronic pain, such as the kind that often followed a stroke. Benabid began experimenting in 1987 with the use of electrodes in Parkinson’s patients and, in 1996, published what is now considered the seminal paper demonstrating that DBS can work.